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Nonlinear stern waves 
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Courant Institute of Mathematical Sciences, New York University, 
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Steady two-dimensional potential flow past a semi-infinite flat-bottomed body is 
considered. This stern flow is assumed to separate tangentially from the body. Gravity 
waves of finite amplitude occur on the free surface. An exact relation between the 
amplitude of these waves and the Froude number F is derived. It shows that these 
waves can exist only for F greater than the value F* = 2-23. This is slightly less than 
the value Fc = 2.26 a t  which breaking occurs. For F slightly larger than F*, the 
steepness is a multi-valued function of F, indicating the existence of more than one 
solution for these values of F. In addition, a numerical scheme based on an integro- 
differential equation formulation is derived to solve the problem in the fully nonlinear 
case. The shape of the free surface profile is computed for different values of F. As 
a cheek on t,he numerical results, they are shown to satisfy the exact relation between 
steepness and the Froude number. 

1. Introduction 
In  recent years important progress has been achieved in the computation of two- 

dimensional nonlinear free-surface flows. For example, Vanden-Broeck & Tuck (1977) 
and Vanden-Broeck, Schwartz & Tuck (1  978) have obtained semi-analytical solutions 
for the flow of an otherwise uniform stream C past a semi-infinite two-dimensional 
flat-bottomed body of draft H (see figure 1). Their method is based on an expansionin 
powers of the Froude number F = I'/(gH)+. It yields stern flows in which the flow 
rises up along the rear face of the body to a stagnation point at  which separation 
occurs. For small values of the Froude number, these stern flows are physically satis- 
fadory and represent small perturbations from the plane y = 0. However, for large 
values of F, these solutions become physically unreasonable since t,he ratio of the 
elevation of the stagnation point to the draft, tends to infinity as F --f co. 

In  the present paper, we describe analytically and numerically a new family of 
stern flows in which the flow separates at  the corner of the body (see figure 1) .  These 
solutions reduce to a uniform stream as F + 00. As the Froude number decreases from 
infinity, the steepness s of the waves (i.e. the peak-to-trough wave height divided by 
the wavelength) increases and reaches the critical 'breaking value' 0.141 for 

F = Fc = 2.26 

(see figure 2). As F approaches Fc, the steepness of the waves becomes a multi-valued 
function of the Froude number. From figure 3 we see that the new solution exists 
only for F 2 F* = 2.23. 

f Present address : Department of Mathematics, Stanford University, Stanford, CA 94305. 
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FIGURE 1.  Computed free-surface profiles with a stagnation point (solid curve) and with sep- 
aration (deshed curve) for P = 6.3. The ordinate y = 0 oorresponds to the level of the free 
surfaoe for which the velocity is equal to U. The unit of length is Ua/2g. Thus the ordinate of 
the oorner of the body is - 2 / P .  

Figure 2 shows that the previously obtained solution with a stagnation point is 
the only solution for F c F* while there are two or more solutions for F > F*. The 
stern flow with separation appears to be the only physically acceptable one for F 
large. Therefore we expect a real stern flow to change from the flow with a stagnation 
point to the one with separation at some value of the Froude number greater than F*. 

In 0 2 we obtain an exact relation between the Froude number and the steepness 
of the waves. In 0 3 we compute nonlinear solutions by a numerical procedure involving 
an integro-differential equation coupled with Newton’s iterations. Typical profiles of 
the free surface are presented. The numerical results are discussed in $3.3.  

2. Conservation of momentum 
The principle of conservation of momentum implies that Is 

Here S is any closed simply connected contour inside the fluid region, V is the vector 
velocity, p is the pressure, p is the density and n is the exterior normal to the contour. 
We now choose S to consist of the plate S,, the free surface S,, a vertical line S, a t  
X = + 00, a horizontal line S ,  at Y = - co and a vertical line S, at X = - 00. We 
take the component of (2.1) along the X axis. After some algebra we obtain (see 
appendix) 
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FIGURE 2. Relation between steepness end Froude number. The solid curve shows the theore- 
tical relation (2.2) in which Cokelet's (1977) results are used. The crosses ( x ) are the numerical 
results. The deshed line corresponds to Vanden-Broeck & Tuck's (1977) solution. 

Here V and T are, respectively, the mean potential energy and the mean kinetic 
energy per unit horizontal area of the waves far away from the plate. Since the flow 
is steady, the phase velocity of the waves in the far field is equal to IT. 

Gravity waves are characterized by their steepness 8 defined as the difference of 
ordinates between one crest and one trough divided by the wavelength. The quantities 
t', V and T are functions of the steepness of the waves. Thus (2 .2 )  is a relation between 
the Froude number and the steepness of the waves far away from the plate. The mean 
potential energy, the mean kinetic energy and the phase velocity have been computed 
as functions of the steepness by Cokelet (1977) using Schwartz's (1974) technique. 

Figure 2 shows the relation between steepness and Froude number obtained by 
substituting Cokelet's results into (2 .2 ) .  On the same graph, we present the corres- 
ponding curve obtained by Vanden-Broeck & Tuck (1977) in the case of the stern 
flow with a stagnation point. The latter solution appears to exist for all values of 
P > 0. On the other hand, the steepness of the waves in our new solution reaches the 
critical breaking value 0.141 for F = Fc = 2-26. In  figure 3 ( a ) ,  we present the curve 
corresponding to our new solution on an expanded scale. This figure shows that the 
steepness of the waves becomes a multi-valued function of the Froude number for 
P slightly smaller than Fc. It also shows that our solution exists only for F > P* = 2.23. 

Longuet-Higgins & Fox (1978) have found asymptotic solutions which show that 
the integral properties of gravity waves oscillate infinitely often as the maximum 



606 J.-Jl. Vanden-Broeck 

I I * 
2.1-6 2.29 F 

1 I * 
2.2634 2.2636 F 

FIGVRE 3. (a) The theoretical relation (2.2) between steepness and Froude number in which 
Cokelet’s (1977) results are used. The curve represents a small portion of the corresponding 
curve in figure 2 on an expanded scale. (t) The theoretical relation between steepness and 
Froude number in which Longuet-Higgins & Fox’s (1978) results are used. The scale has been 
expanded to show clearly the second oscillation. 

height is approached. Substituting their formulas into (2.2), we obtain the parametric 
equations 

F = [lei931 -1~188cos (2~1431ns+2~22) ]~  

x roe05426 - 1 . 0 1 4 ~ ~  cos (2.143 In E + 1.49) 

+0.868cos (2*143lns+ 1.66)]-4+0(s3), (2.3) 

(2.4) 
0.5 s = 0.14107 - - s2 + 0.168 cos (2.143 In E - 1.54) + o(s3). 

The parameter E is proportional to the speed at the crest of the wave, which is zero 
for the highest wave. 

Relations (2.3) and (2.4) show that the Froude number oscillates infinitely often 
as the maximum steepness is approached. The first oscillation is obtained directly 
from Cokelet’s results and is presented in figure 3 (a). The subsequent oscillations are 
described parametrically by (2.3) and (2.4). The second oscillation is shown in figure 

?r 
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F 
3.3406 
2.6949 
24473 
2.2872 
2.2366 
2.2399 
2-2453 
2-2672 
2.2629 

8 

0.04168 
0.07378 
0.08626 
0.10820 
0.12722 
0.13291 
0.13609 
0.13826 
0.13989 

h lH 
2.866 
2.968 
3.016 
3.169 
3.412 
3.635 
3.696 
3.705 
3.770 

h/H 
6 8 9 3  
40.09 
3447 
29.29 
26.82 
26-69 
28-61 
26-80 
26.96 

TABLE 1. values of 8, h / H  end h / H  for various values of F 

3 ( b ) .  These oscillations indicate the existence of an infinite number of solutions for 
values of F arbitrarily close to F,. 

Relation (2 .2 )  and the results tabulated by Cokelet were used to obtain the wave 
height h (i.e. the difference of ordinates between a crest and a trough) and the wave- 
length h as functions of the Froude number F .  These results are presented in table 1 .  
For large values of F ,  the quantities 8,  h /H and h / H  can be evaluated by approximating 
the waves by the sine waves of linear theory. Thus we obtain 

h/H = 2nF2. (2.7 1 
The difference between ( 2 . 5 ) ,  (2 .6)  and (2 .7)  and the values of table 1 at F = 3.3406 is 
less than 3 yo. 

3. Numerical solution 
3.1.  Formulation 

We denote the potential function by Q, and the stream function by Y.  Without loss 
of generality we choose Q, = 0 a t  the edge of the plate and Y = 0 on the free surface 
(and therefore also on the plate). We make the variables dimensionless by referring 
them to a velocity scale U and a length scale CT2/2g. 

Thus we define the dimensionless quantities 

2 s  Y = p, y, 



608 J.-M. Vanden-Broeck 

The condition of constant pressure on the free surface can be written 

y + q 2 = 1 ,  $ = O ,  $ > O ,  (3.5) 

where q is the magnitude of the velocity. In  non-dimensional variables we have now 8 

uniform stream with unit velocity at infinity. 
If u and v denote respectively the horizontal and the vertical components of the 

velocity, we write 
f =  d+i$r, ( 3.6) 

z = x+iy ,  (3.7) 

dz -1 1 
u- iv= (z-) = - 

x+ + iy+* 

We shall seek x+ + iy+ as an analytic function off, in @ < 0. The free surface is a 
portion of the streamline $ = 0, on which (3.5) becomes 

We now apply Cauchy’s theorem to x4- 1 +iy+, on a path consisting of the com- 
plete streamline $ = 0 and a semicircle at $ = -a. Since x+ - 1 + iy+ --f 0 as $ -+ - 00 

we have for $ < 0 

Setting $ = 0 in (3.10) and taking the real part, we obtain 

(3.10) 

(3.11) 

the integral being of Cauchy principal-value form for q5 > 0. 
Relations (3.9) and (3.11) define a nonlinear singular integro-differential equation 

for the unknown function x+ + iy+ on the free surface. We now make the flow leave the 
plate tangentially by requiring 

Y+l+=o+, 9-0 = 0. (3.12) 

The problem is completely defined by imposing the value of y a t  $ = 0. Using (3.2) 
and the definition of F we have 

Y($)l+-o = - 2 P 2 .  (3.13) 

3.2. Numerical analysis 

We seek a numerical solution of the integral equations (3.9), (3.11)-(3.13). The inter- 
val of discretization is defined as E .  We represent the functions ay/aq3, axla$ and 
y($) on the free surface by the vectors 

(3.14) 
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i 

I 
FIGURE 4. Numerical solution for the free surface at F = 2.35. 

The components of these vectors are the values of the functions at the mesh points 

# = ( 7 5 t = ( i - 1 ) E ,  i =  1) ..., N .  (3.15) 

The condition (3.12) becomes now 

y$ = 0. 

The function @/a# is approximated between the mesh points by a cubic spline. 
Using the relations (3.11) and (3.13) we obtain after exact integration of the cubic 
spline 

(3.16) 

X' = 1 +By', (3.17) 

where A and B are known matrices. The error inherent in approximating the infinite 
integral (3.11) by an integral over a finite interval was found to be negligible at  a 
distance less than a wavelength from the last mesh point. 

Substituting (3.16) and (3.17) into (3.9), we get a system of N - 1 nonlinear algebraic 
equations with N - 1 unknowns ($, . . . , $). This system is solved by Newton itera- 
tions. For the first approximation we take y' = 0. Each iteration requires the com- 
putation and inversion of a matrix. The program was run on a CDC CYBER 173 
computer with N = 100 and E = 0.5 and a solution of the algebraic equations with 
an error less than 10-lO was obtained in a few iterations. 

3.3. Discussiolz of the results 

The free surface profile contains a train of waves behind the plate. The highest point 
of the profile corresponds to the crest nearest the plate. The steepness of the waves 
decreases away from the plate and reaches a constant value after a few cycles. Figure 
2 shows this constant value for different values of the Froude number F .  These 
numerical results are in good agreement with the theoretical relation derived in 5 2. 

Typical profiles of the free-surface for F = 6.3 and F = 2.35 are presented in figures 
1 and 4. In both figures, the horizontal scale has been shrunk in order to show clearly 

20 PLY 96 
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the waves behind the plate. In  figure 1 the waves are very close to sine waves. On 
the other hand in figure 4 the waves are quite noticeably nonlinear with sharp peaks 
and broad troughs. 

The numerical scheme was found to converge only when F 2 2.3. This domain of 
convergence coincides with the values of the Froude number for which the steepness 
8 is a single-valued function of F .  

I wish to express my thanks to Professor J. B. Keller for valuable suggestions during 
the preparation of this paper. This work was supported in part at the University of 
Adelaide by the Australian Research Grants Committee and at the Courant Institute 
by the Air Force Office of Scientific Research, by the Army Research Office and by the 
Office of Naval Research. 

Appendix 
Taking the component of (2.1) along the X axis we have 

Js [Vx(V.n)+gYn,+- " I  P nx dS = 0. (A 1) 

Here V, and n, are respectively the components of V and n along the X axis. It is 
convenient to replace the line 8, by a horizontal line at  Y = - d ,  where d is arbitrarily 
large. Without loss of generality, we assume that 8, intersects the free surface at the 
level Y = 0. 

The integrals over S, and S, in (A 1) do not contribute. The integration over S,, 
SR and S, in (A 1) gives 

Here V* is the uniform velocity at  X = - co. The quantity 8, is defined by 

8, = J0 @-tPv:)I,,+W~y (A 3) 
-a 

and represents the momentum flux per unit span of the waves far away from the 
body. Using Bernoulli's equation we rewrite the integral in (A 2) as 

For waves in water of infinite depth (A 3) can be mitten as (Longuet-Higgins 
1976) 

S ,  = - 3 V + p d U 2 + b p d 2 g .  (A 5 )  

Here V is the mean potential energy per unit horizontal area of the waves. Substituting 
(A 4) and (A 5 )  into (A 2) we have 

3v 
2 P  

gs - - p H -  &( V * ) l H +  )[( V * ) V  - P d ] .  
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The conservation of mass can be written as 

V*(d - H )  = E'd - 2T/(  Up), (A 7) 

where T is the mean kinetic energy per unit horizontal area of the waves. Multiplying 
(A 7) by V* and U and adding the results we have 

(A 8) 
T T V* (V*)'d-U'd = ( V * ) ' H + V * U H - 2 - - 2 - -  
P P U '  

Substituting (A 8) into (A 6) ,  we obtain 

As d --f -a, we have V* = C. Thus 

Using the definition of F we rewrite (A 10) as ( 2 . 2 ) .  
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